OPERATING INSTRUCTIONS
AVOMETER MODEL 8 Mark 5

CONTENTS

SPECIFICATION

Table of Ranges 1
Accuracy etc. 1

ACCESSORIES

Replacement Batteries 2

OPERATION

General 3
Current Measurement 3
Voltage Measurement 3
Resistance Measurement 4
Insulation Resistance Measurement 6
Decibel Measurement 6
Polarity Reversal Control 6
Overload Protection 6
E.H.T. Measurement 8

TRADE MARKS
The Trade Marks AVO and AVOMETER are the exclusive property of Avo Limited.

Heavy A.C. Current Measurement 9
Heavy D.C. Current Measurement 9
Non-Sine Waveforms 9

DESIGN FEATURES

Design and Construction 10
Range Controls 10
The Movement 10
Scaling 10

SERVICING YOUR AVOMETER

Replacement of Batteries and Fuse 11
Plug-in type leads 11
AVO Repairs Department 11
Table of Components 12
Circuit Diagram 13

SWITCH TRANSIT POSITION
During transit the left-hand switch should be set to OFF. The right-hand switch should be set to D.C.

TABLE OF RANGES

DC Voltage DC
3000V 1
1000V 1
600V 1
300V 1
100V 1
30V 5
10V 5
3V 5
100mV* 5
*On the 50µA range

Resistance
0 to 2000Ω (200kΩ)
0 to 200kΩ (2kΩ)
0 to 20MO (20kΩ)
0 to 200MO (2MΩ)

ACCURACY
D.C. Voltage & A.C. Voltage &

SENSITIVITY
D.C. Voltage Rd & A.C. Voltage Rd

FREQUENCY
Variation from 1 up to 300V and ±3% between
TABLE OF RANGES

<table>
<thead>
<tr>
<th>DC Voltage</th>
<th>DC Current</th>
<th>AC Voltage</th>
<th>AC Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000V</td>
<td>10A</td>
<td>3000V</td>
<td>10A</td>
</tr>
<tr>
<td>1000V</td>
<td>1A</td>
<td>1000V</td>
<td>1A</td>
</tr>
<tr>
<td>600V</td>
<td>10mA</td>
<td>600V</td>
<td>10mA</td>
</tr>
<tr>
<td>300V</td>
<td>10mA</td>
<td>300V</td>
<td>10mA</td>
</tr>
<tr>
<td>100V</td>
<td>1mA</td>
<td>100V</td>
<td>1mA</td>
</tr>
<tr>
<td>30V</td>
<td>300μA</td>
<td>30V</td>
<td>300μA</td>
</tr>
<tr>
<td>10V</td>
<td>60μA</td>
<td>10V</td>
<td>60μA</td>
</tr>
<tr>
<td>3V</td>
<td>30μA</td>
<td>3V</td>
<td>30μA</td>
</tr>
<tr>
<td>100mV</td>
<td>3V</td>
<td>100mV</td>
<td>3V</td>
</tr>
</tbody>
</table>

*On the 50μA range

Resistance

- 0 to 20kΩ (20Ω centre scale)
- 0 to 20MΩ (200kΩ centre scale)
- 0 to 200MΩ (2MΩ centre scale)

ACCURACY

- D.C. Voltage & Current Ranges: ±1% of f.s.d.
- A.C. Voltage & Current Ranges (50Hz): ±2% of f.s.d.

SENSITIVITY

- D.C. Voltage Ranges: 20,000Ω/V
- A.C. Voltage Ranges: 2,000Ω/V (above 10V)

FREQUENCY RESPONSE

Variation from reading at 50Hz, on A.C. voltage ranges up to 300V and A.C. current ranges is not greater than ±3%, between 15Hz and 15kHz

TEMPERATURE RANGE

- Operation: -5°C to +35°C
- Storage: -40°C to +50°C

TEMPERATURE EFFECT

Variation due to temperature change, not greater than 0.15% per degree C

FLASH TEST

7kV proof

OVERLOAD PROTECTION

High speed electro-mechanical cut-out with a fuse on the two lower resistance ranges

RESPONSE TIME

Typically 1 second to full scale
ACCESSORIES

TEST LEADS
1 metre (approx. 42in.) with 4mm plug end
1.8 metres (approx. 72in.) with hook end
3 metres (approx. 120in.) with hook end

AVO part Numbers
Pt. No. 6220-003/4 (pair)
Pt. No. 209130/O/R (pair)
Pt. No. 209131L/M (pair)
Pt. No. 6220-007 (pair)
Pt. No. 6220-008 (black)
Pt. No. 6220-009 (red)
Pt. No. 6120-012/3 (pair)
Pt. No. 6120-003 (each)
Pt. No. 14319 C/D (pair)
Pt. No. 6320-002
Pt. No. 6320-052
Pt. No. 6220-015
Pt. No. 6220-016
Pt. No. 6220-017
Pt. No. 6220-018

TEST PRODS
Long reach safety clips (red and black)*
Standard AVO prods (red and black)

Pt. No. 6220-007 (pair)
Pt. No. 6220-008 (black)
Pt. No. 6220-009 (red)
Pt. No. 6120-012/3 (pair)
Pt. No. 6120-003 (each)
Pt. No. 14319 C/D (pair)
Pt. No. 6320-002
Pt. No. 6320-052
Pt. No. 6220-015
Pt. No. 6220-016
Pt. No. 6220-017
Pt. No. 6220-018

CURRENT TRANSFORMER
AVO Multirange transformer for a.c. currents up to 500A

Pt. No. 45869
Pt. No. 6310-094
Pt. No. 6220-039

VOLTAGE MULTIPLIERS
10/30 kV d.c. box type
30 kV d.c. probe type

Pt. No. 25511-013
Pt. No. 25511-181

REPLACEMENT BATTERIES
Ever Ready SP2 (or equivalents, Burgess 210 or 230, Ever Ready HP2, IEC R20, Leclanché R20S, Ray-O-Vac 13 or 3D, Varta 232)

And

Ever Ready B121 (or equivalents, Burgess U10, IEC 10F20, Leclanché 21B6, Ray-O-Vac 208, Varta 71)

Or

Ever Ready B154 (or equivalents, Burgess Y10, IEC 10F15, Leclanché GB16, Ray-O-Vac 220, Varta 74)

REPLACEMENT FUSE
1½ inch Cartridge Fuse — 1A*

Pt. No. 6120-299 (Pack of 5)

*These accessories are included with each new
AVOMETER B

OPERATICS

GENERAL

The meter is on internal calibration and is not on zero, it is the panel.

The leads fitted are suitable for the meter terminals. For high potential measurements, it is required to fit the appropriate leads, as required, to the meter terminals. For low potential measurements, it is required to fit the appropriate leads, as required, to the meter terminals.

When measuring voltage, the instrument is set to the range before connecting the leads to the circuit. Always turn the instrument down as the switch position is set to the range before connecting the leads to the circuit.

Do not switch off the instrument when the leads are connected to the circuit.

The instrument is provided with a set of accessories on deliverable. These accessories are kept at the low potential (as required) or for high potential measurements. The accessories are kept at the low potential (as required) or for high potential measurements. The accessories are kept at the low potential (as required) or for high potential measurements.
OPERATION

GENERAL

The meter is intended for use horizontally. If the pointer is not on zero, it may be set by using the screw head on the panel.

The leads fitted with Long Reach Safety Clips Mark 2 or clips, as required, should be connected to the lower pair of meter terminals except when measuring voltages over 1000V. Long Reach Safety Clips are not suitable for high current.

When measuring current or voltage, ensure that the instrument is set to either ac or dc as appropriate and a suitable range before connecting up to the circuit under test. When in doubt, always switch to the highest range and work downwards, there is no necessity to disconnect the leads as the switch position is changed.

Do not switch off by rotating either of the knobs to a blank position.

The instrument is flash tested at 7000V ac but if used with accessories on circuits in excess of 3000V, it should be kept at the low potential end of the circuit (near earth potential) or other suitable safeguards must be applied.

CURRENT MEASUREMENT

To measure current, the instrument should be set to a suitable ac or dc range and then connected in series with the circuit under test.

The voltage drop at the meter terminals is 400mV on the 10A dc range dropping to 100mV on the 50 microamp range. In the case of ac ranges it is less than 450mV, on all ranges. Standard meter leads have a resistance of 0.02 ohm per pair. Ensure that the circuit is 'dead' before breaking into it to make current measurements.

VOLTAGE MEASUREMENT

When measuring voltage, it is necessary to set the appropriate range of 'ac' or 'dc' and connect the leads across the source of voltage to be measured. If the voltage is unknown, set the instrument to its highest range, connect up and if below 1000V, decrease the ranges step by step until the most suitable range has been selected. If the voltage should exceed 1000V, the instrument should be set to measure 1000V as described above, but the positive lead should be transferred to the appropriate 3000V terminal.

Great care must be exercised when making connections to a live circuit and the procedure should be entirely avoided if possible.
When measuring high ac and dc voltages (say above 800V) unless the common negative terminal is either earthy or connected to earth, errors will be introduced if the instrument is touched during a reading.

On dc ranges, the meter consumes only 50 microamps at full scale deflection corresponding to 20,000Ω/V. In the case of ac ranges above 10V, full scale deflection is obtained with a consumption of 0.5mA (2000Ω/V). The 10V range is 1000Ω/V. The 3V ac range consumes 10mA at full scale deflection. The meter maintains a high degree of accuracy for audio frequency tests up to 15kHz on ranges up to 300V ac. All current consuming voltmeters, however sensitive, draw current of varying degrees from the circuit under test, thus causing the voltage to fall at the point of measurement.

Owing to the high sensitivity of the Model B on dc ranges, this effect is unlikely to be of importance except in very few instances. It might effect the measurement of e.h.t. voltage on a television set or the tapping on a potential divider, where the resistances are comparable with the resistance of the meter on the range in use. It is generally possible to use a meter on a higher range than absolutely necessary where the higher meter resistance causes less disturbance. At the same time adequate pointer deflection for reasonable accuracy should be attained.

When it is essential to obtain an accurate indication of the voltage developed across a high value resistor it is sometimes preferable to insert the meter in series with it and to measure the current flowing. The reading in millamps, multiplied by the value of the resistance in thousands of ohms, will give the developed voltage.

RESISTANCE MEASUREMENT

There are three self-contained ranges covering from 1 ohm to 20 megohms and provision is made for upward extension of these limits.

On resistance ranges, the meter must have, in addition to the normal instrument zero a resistance zero corresponding to the full scale deflection of the meter. Before carrying out tests for resistance, a check should be carried out to ensure that the meter actually indicates zero ohms irrespective of the condition of the battery (within the limits of adjustment described later).

The accuracy, should be within 3% of the reading about centre scale, increasing up to about 10% of the indication around deflections corresponding to 10% and 90% of full scale deflection.

Resistance tests should never be carried out on components which are already carrying current.

On three ranges within a positive potential of the instrument with respect of some component the current through the component is quite apart from voltages across electrolytic capacitors.

When measuring across a capacitor, the negative lead connected to the positive X10 range empl...

Before making a measurement adjust to zero:

1. Set the left hand switch to the appropriate range.
2. Join the leads together for calibration.
3. On the 1Ω range, make the needle deflect to a point marked Ω on the scale.
4. On the 10Ω range, make the needle deflect to a point marked X1 on the scale.
5. On the 100Ω range, make the needle deflect to a point marked X10 on the scale.
OPERATION

On three ranges which utilise the internal source of voltage, a positive potential appears at the negative terminal of the instrument when set for resistance tests. The resistance of some components varies according to the direction of the current through them and readings therefore, depend upon the direction in which the test voltage is applied quite apart from its magnitude. Such cases include electrolytic capacitors and rectifiers.

When measuring the leakage resistance of an electrolytic capacitor, the negative lead from the meter should be connected to the positive terminal of the capacitor and the ohms x 10k range employed.

Before making resistance tests the pointer should be adjusted to zero in the following sequence:

1. Set the left hand switch at Ω.
2. Join the leads together.
3. On the $\Omega \times 1$ range adjust zero by means of the knob marked $\Omega \times 1$.
4. On the $\Omega \times 100$ range adjust zero by means of the knob marked $\Omega \times 100$.
5. On the $\Omega \times 10k$ range adjust zero by means of the knob marked $\Omega \times 10k$.

To test a resistance, set the right-hand switch at the range required, the leads being connected across the unknown component.

Resistance is read directly on the $\Omega \times 1$ range but readings should be multiplied by 100 and 10,000 on the $\Omega \times 100$ and $\Omega \times 10k$ ranges respectively.

If on joining the leads together it is impossible to obtain zero ohms setting, or if the pointer position will not remain constant, but falls steadily, the internal battery or cell concerned should be replaced. It is important that a discharged unit should not be left in the instrument, since it might cause damage to the meter. If it is impossible to obtain readings on the $\Omega \times 1$ and $\Omega \times 100$ ranges, the 1A fuse located in the battery box should be checked.

NOTE: A 15V battery may age in such a manner that although it indicates a potential of 15V, its internal resistance has increased so much that some loss of accuracy can occur on the high resistance range ($\Omega \times 10k$). If errors are suspected on the high resistance range, remove the battery and check its short circuit current on the 100mA dc range. If the reading is below than 25mA it should be discarded.
INSULATION RESISTANCE MEASUREMENT

High resistance measurements may be made using an external dc voltage of the order of 140/160V. The left-hand switch should be set at Ω with the right-hand switch at INS and the meter leads should be connected to the battery. The pointer should be brought to zero on the ohms scale by means of the adjuster marked Ω x 10k. To test, connect the unknown resistance in series with the meter and its value will be that shown on the ohms scale multiplied by 100,000. Resistances up to 200 megohms can, therefore, be read on this range.

DECIBEL MEASUREMENTS

The graph on Page 7 can be used to determine the dB values corresponding to r.m.s. voltage values across a 600 ohm resistive load. A dB value is defined as the number of decibels above or below a reference level of 1mW in 600 ohms at 1kHz. Zero dB, therefore, would indicate a power level of 1mW: 10dB, 10mW; 20dB, 100mW. Because dB are defined with respect to a 600 ohm load, power levels correspond to voltage levels. Decibels can be measured in terms of r.m.s. voltages across a 600 ohm resistive load. For example, 0.775V r.m.s. indicates 0dB and 7.75V r.m.s. indicates 20dB. Whilst these measurements must be made with a sine waveform to avoid waveform error, any frequency may be used within the range of the Model 8 Mark 5. The decibel and ear response curves have their closest correlation at 1kHz.

Power levels can be read along the top of the graph. If the r.m.s. voltage is measured across a resistive load other than 600 ohms the correction factor given below must be added algebraically to the dB values read from the graph. The following formula should be used for determining the correction factor.

Correction Factor = 10 * log₁₀ \(\frac{600}{R} \)

where R is the load in ohms. If R is greater than 600 ohms the Correction Factor is negative.

POLARITY REVERSE CONTROL

If dc voltage is required both positive and negative to a reference point, or the direction of current flow may be reversed, in order to simplify the matter of lead alteration, a polarity reverse press button (REV. M.C.) is provided. It should be noted that the polarity marked on the terminals is for normal use and does not apply when the red section of the REV. M.C. button can be seen.

OVERLOAD PROTECTION

One of the most attractive features of the instrument is the provision of an automatic cut-out which gives a very high degree of overload protection, and imparts to the user a feeling of confidence.
If an overload is applied to the meter, either forward or in reverse, the cut-out knob springs from its normal position in the panel, thus breaking the main circuit and the red portion of the cut-out knob will show. This knob has only to be depressed to render the instrument again ready for use. It is important to note that the cut-out should never be reset when the instrument is connected to an external circuit, whilst the fault which has caused the overload should be rectified before the meter is reconnected.

Although the overload mechanism gives almost complete protection to the meter, it cannot be guaranteed to completely fulfil its function in the very worst cases of misuse, such as the mains being connected across the meter when set to a current range. It should be noted that mechanical shock to the instrument will sometimes trip the cut-out mechanism. Additional protection is provided on resistance ranges by a fuse connected in the $\Omega \times 1$ and $\Omega \times 100$ ranges.

WARNING Special care must be taken when using the instrument to service television receivers or other apparatus employing capacitors of large capacitance, for the inclusion of such components in a circuit may mean that very heavy peak currents may flow when the apparatus is switched on. Such surges produce a peaky waveform and although these peaks are only of a few milli-seconds duration, they may, never-the-less, damage the instrument diodes.

EHT MEASUREMENT

CAUTION: It is recommended that neither the meter, multiplier nor leads are handled whilst high voltage tests are in progress.

Using the Combined 10kV/30kV Multiplier

A combined 10kV and 30kV dc multiplier is available for use with the instrument. The Multiplier should be connected to the AVOMETER set to the 10V dc range. It is recommended that the meter is kept as near earth potential as possible and the Multiplier used at the high potential end, e.g. when measuring an e.h.t. voltage when the negative line is earthy, the Multiplier should be connected between the point of positive potential and the positive terminal of the meter. In addition, the low potential end of the meter must be connected to the low potential of the supply being measured using the low potential lead provided. A cap is provided which should always be in position over the high voltage terminal not in use.

A resistor connected permanently across the multiplier terminals prevents the full voltage being present should the meter be disconnected.

General Note: When measuring high ac and dc voltages (say above 800V) unless the common negative terminal is either earthy or connected to earth, errors will be introduced if the instrument is touched during a reading.
Using the 30kV Probe Multiplier

A 30kV dc Multiplier is available for use in series with the meter set to its 1000V dc range, readings being made direct in kV on the 0–100 scale and multiplied by 300. It is most important to ensure that the meter is kept in the earthy end of the circuit and the multiplier connected to either the positive or negative terminal whichever is at high potential. This method of connection to get forward pointer indication with the meter earthy is recommended as we do not think it desirable to use the moving coil reverse button when measuring high voltage.

A special lead is provided with the multiplier for connection to the high potential point.

HEAVY AC CURRENT MEASUREMENT

AC currents between 10A and 600A may be measured by use of the AVO Multi-range Current Transformer (Pt. No. 45868). Full operating instructions for its use are packed with the optional accessory.

HEAVY DC CURRENT MEASUREMENT

D.C. currents between 10A and 600A may be measured by use of the appropriate AVO DC Shunt accessory. When used with the AVO METER 8 Mk 5, the shunts produce a voltage drop of 100mV when passing current at their maximum rating.

The Shunt should be connected by means of its two main terminals in series with the circuit to be measured. The meter set to its 50µA (100mV) dc position should then be connected to the two small studs on the shunt ends block. The AVO METER when so set, consumes only 50µA at full scale deflection, a value which is negligible in comparison with the full scale current of the shunt. The millivolt drop across the shunt is directly proportional to any current which may flow through it and since the deflection on the meter is directly proportional to the millivolt drop across the terminals, the instrument indicates correctly over its entire scale length.

NON-SINE WAVEFORMS

Inasmuch as rectifier moving coil instruments give readings on 'ac' proportional to the mean and not the r.m.s. value of the waveform with which they are presented, they depend for their accuracy, not only upon their initial calibration, but also upon the maintenance of a sinusoidal waveform. Since the form factor (r.m.s. value divided by mean value) of a sine wave is 1.11, this has been taken into account in calibrating the meter, which, therefore, indicate r.m.s. values on the assumption that the normal sine wave will be encountered. Generally speaking, considerable waveform distortion can occur without appreciably affecting the form factor and resulting accuracy of measurement, but the user should recognize the possibility of some error when using distorted waveforms, squarish waveshapes producing high readings and peaky ones, low readings.
DESIGN AND CONSTRUCTION

The instrument comprises a moulded panel on which are mounted the whole of the switching apparatus, the movement and other components. A carrying strap is fixed to moulded lugs on the rear case. The front panel is fitted into this case with a dust proof joint. The switches are of generous and robust design, the contacts being arranged to ‘make’ before ‘break’ on adjacent ranges; a feature which provides a factor of safety in use.

When the instrument is set for operation on dc the moving coil is associated with a universal shunt and series multipliers, whilst on ac, diodes and a transformer are also introduced.

RANGE CONTROLS

The left-hand knob provides all the dc current and voltage ranges (except 3000V) and the right-hand knob the ac ranges (except 3000V) and also the resistance ranges. These knobs are electrically interlocked so that readings can only be made after ac or dc measurement and range has been selected. Resistance tests require the left-hand switch to be set to Ω and the right-hand one to the desired range.

The ranges are marked on the panel and arrow heads indicate the actual range selected. The 3000V ac and dc ranges are available at the two 3000V terminals.

Wide coverage in resistance has been achieved by having a fundamental range as marked on the scale, together with ranges of x 100 and x 10k to supplement it.

In addition a 200 megohm range marked INS is available, using an external dc voltage source (See Page 7).

THE MOVEMENT

The meter movement in the Model 8 Mark 5 is a robust AVO centre pole movement type ACP1, fitted with spring mounted jewelled bearings and impregnated coil. The meter has a full scale deflection of 37.5μA. A knife edge pointer enables very fine readings to be taken, whilst the whole movement is balanced and damped so that the pointer quickly comes to rest.

SCALING

The scale plate has three main sets of markings. One is for resistance measurement and is marked 0 to 2000 ohms, the second is for current and voltage (both ac and dc) and is marked 0 to 10 whilst the third scale calibrated 0 to 3 has 60 divisions and is used for current and voltage measurements.
SERVICING YOUR AVOMETER

REPLACEMENT OF BATTERIES and FUSE

By turning the \(\frac{1}{4} \) turn fastener on the back of the instrument until the slot is vertical, the 15V battery, 1.5V cell, 1A fuse and spare fuse are easily accessible. The batteries should be examined from time to time to ensure that the electrolyte is not leaking.

If the meter is going to stand unused for several months, the batteries should be removed.

When replacing the 1.5V cell and the 15V battery they must be inserted in the correct polarity.

Suitable replacement batteries are listed on Page 3.

PLUG-IN TYPE LEADS

When ordering replacements, the full description and Part numbers should be quoted.

AVO REPAIRS DEPARTMENT

Due to the high standards maintained throughout our organisation, breakdowns are comparatively rare and can often be traced to transit damage or careless handling, for which the company cannot be held responsible. If however, your instrument should require servicing or a calibration check, we at AVO have the knowledge and equipment to repair your instrument to the highest possible standard. For those customers who feel they have the necessary skill and equipment to carry out their own servicing requirements, spares are available from Avo Limited. To obtain the correct spares item, identify the component required and state its position on the instrument. Where applicable state the circuit reference number. Should you at any time have to return your instrument to the Company for repair, pack it carefully and enclose a note informing our engineers of the faults which you have found. Customers outside the U.K. should contact the AVO representative for their territory.
TABLE OF COMPONENTS

<table>
<thead>
<tr>
<th>R1</th>
<th>18.4Ω</th>
<th>R22</th>
<th>6MΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>2.18kΩ</td>
<td>R23</td>
<td>8MΩ</td>
</tr>
<tr>
<td>R3</td>
<td>62kΩ</td>
<td>R24</td>
<td>40MΩ</td>
</tr>
<tr>
<td>R4</td>
<td>180kΩ</td>
<td>R25</td>
<td>4MΩ</td>
</tr>
<tr>
<td>R5</td>
<td>1.8MΩ</td>
<td>R26</td>
<td>20kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>7kΩ*</td>
<td>R27</td>
<td>Movement</td>
</tr>
<tr>
<td>R7</td>
<td>500Ω*</td>
<td>R28</td>
<td>swamp</td>
</tr>
<tr>
<td>R8</td>
<td>5kΩ*</td>
<td>R29</td>
<td>5kΩ*</td>
</tr>
<tr>
<td>R9</td>
<td>0.04Ω</td>
<td>R30</td>
<td>989Ω</td>
</tr>
<tr>
<td>R10</td>
<td>0.35Ω Printed</td>
<td>R31</td>
<td>270Ω</td>
</tr>
<tr>
<td>R11</td>
<td>3.6Ω Shunt</td>
<td>RV1</td>
<td>15kΩ</td>
</tr>
<tr>
<td>R12</td>
<td>36Ω</td>
<td>RV2</td>
<td>16kΩ</td>
</tr>
<tr>
<td>R13</td>
<td>360Ω</td>
<td>RV3</td>
<td>18kΩ</td>
</tr>
<tr>
<td>R14</td>
<td>933Ω</td>
<td>D1, D2</td>
<td>OA95</td>
</tr>
<tr>
<td>R15</td>
<td>6.667kΩ</td>
<td>C1</td>
<td>220pF</td>
</tr>
<tr>
<td>R16</td>
<td>58kΩ</td>
<td>C2</td>
<td>0.015µF</td>
</tr>
<tr>
<td>R17</td>
<td>140kΩ</td>
<td>C3</td>
<td>470pF</td>
</tr>
<tr>
<td>R18</td>
<td>400kΩ</td>
<td>B1</td>
<td>1.5V</td>
</tr>
<tr>
<td>R19</td>
<td>800Ω</td>
<td>B2</td>
<td>15V</td>
</tr>
<tr>
<td>R20</td>
<td>800kΩ</td>
<td>Movement</td>
<td>Avo large centre pole</td>
</tr>
<tr>
<td>R21</td>
<td>4MΩ</td>
<td></td>
<td>Type ACP1</td>
</tr>
</tbody>
</table>

* Adjusted on calibration.